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Abstraet Forest growth and vield prediction models developed through ordinary least squares regression account for most of the
empirically based and process (physiological} models. More recently use of non-linear minimisation techniques have contributed
greatly to developing growih and vield models with stable parameters. However, heteroscedasticity problems are difficult to deal
with, especially with non-linear least squares regression models or linear least squares regression madels developed from data
covering different geographical areas. H is of great importance that models have good statistical properiies, be simple to
mplement, quick to validate, be stable and parametrically efficient. Dynamical models provide a panacea in this regard and
excellent gualities for control designs (optimisation strategies) that are the end-point of management decision support sysiems.
They account for some time dependent nan-linearities as linear trends with good statistical properties. This paper compares a
nmuitiple regression medel. a non-linear continuous-time model and a discrete-time dynamical model developed from the same

data.

1LIMNTRODUCTION

In forest planning, growth madels have been developed to aid
decision-making. Planning is the problem ol delermining an
optimal  procedure for  attaining 2 set of  objectives
[Luenherger, 1969]. The traditional approach in forestry has
been 1o separately identify different forest srowth variables,
then measure and model them. These variables are commonly
mortality, basal area, height, tree diameter distribution and
volume. Decision support systems are then developed by
intearating the varieble models in some sequential way and
tems are used to simulate forest management

west possible
sirafegies to meel management ohjectives. The decision
support system simulates the various straiegies, providing the

these

strategies. Expert knowledge is used to sug

hasis for comparison and elimination of the less bikely
options.

Optimisation techniques can also be used to determineg an
optimal  strategy lo maximise  management abjectives.
Because ol the mulistage decision-making nature of forest
planning problems, dynamic programming has always been
found appealing. In forestry, however, dynamic programming
has been used sparingly. Arimizu [1958] used it tu regulate
imtermediate culting with the objective of producing a
masimum harvest volume. Hool [19657, using simply a ‘eut’
or ‘do polt cut’ strategy, applied a dynamic programming
model. Later he introduced & Markoy chain approach to
production control using a dynamic programming model
IHoot, 1966]. Amidon and Akin {1968] compared traditional
marginal  analysis  with  dynamic programming  for
determining optimal growing stock and found the fatter to be
nore flexible and convenient. Other authors have ilustrated
the feasibility of dynamic programming for deriving optimal

cutting schedules for timber stands [Risvand 1969: Kitkki
and Vaisanen 1969 Schreuder, 1971]. Many researchers in
forest management studied dysamic programming o support
the sequential decision making required for decisions about
the thinning regime and rotation of even-aged stands [Brodie
and Kao, 1979 Chen et. al. 1980; Martin and Bk, 1981
Haight et. at., 19851

Unfortunately many of the above papers are difficult o
foliow because explicit derivation of the solution procedures
is lacking [Chen et al, 1980] Ap additional shortcoming of
several of the papers is the absence of suitable forest growth
models - that is, ones directly refated to the decision variable.
These two factors, pius the unfamiliariey of most readers with
the special conditions which must be met for a problem to be
solved as a dynamic programming probiem. account for the
limited apphication of dynamic programming in lorestry
[Chen ot al. 1980} Chikumbo and Marcels [1993a] have
demonstrated the application of the maximum principie {a
sofution technigue similar to dynamic programiing) 1o
determine optimum thinning strategies for P patifa Schl.
et Cham.. in South Africa by using appropiate decision stand
variable-models {dynamical models). In addition 1o their
suitability In & multistage optimisation formulation, the
dynamical models were easy (o test, parametrically ¢fficient
and easy to understand.

Despite the simplicity of these dynamical models, how
elinble are they in predicting growth? Lack of comparable
date and conventional models predicting the same response
variable has prevented the comparison of models developed
from different approaches. Conventional models developed
for forest management can be categorised into two broad
classes: mechanistic and empirical models. The mechanistic
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models are based on an understanding of the physical or
physiclogical functioning of the system. Empirical models
describe the trends and relationships with other variables. In
this paper three models for basal area prediction. that s,
dynamical, mechanistic and empirical, were compared.
Details of the models are found in sub-section 3.

To carry out & consistent test which would determine the best
model in terms of predicting basal area, data not used in
model development were used to cross validate the three
models. Cross validation checks the performance of & model
against a fresh data set that has not been used for model
development. It is a sensible way of comparing different
models obtained from different merhods.

2. BATA

The data used for this model development and cross
vatidation were obtained from P, poada corelated curve
trend (CCTY spacing trials in Nelshoogte, (South Afica), The
CCT  experiment was  established in 1937 with four
replications {4, 8, " and ) of each of the 16 spacing
treatments. Eight nominal stand densities (plots 1-8). were
established at 2965 stems per hectare (stems/ha). The plots
were “thinned in advance of competition” such that the initial
densities ranged from 124-29635 stems/ha. Plots 9-16 were
thinned to investigate the various degrees of suppression and
release. The thinning plots are shown in Table .

Table 1. Treatment specifications (Schedule of stem number reduction)
Age (vears)
Plot
0 L.67 3.50 4.00 5.06 6.00 7.50 8.00 1067 | 15,07 1 1925 { 2333
1 2963
2 29635 § 1483
3 2965 1483 | 988
4 2965 | 1483 | v8s 741
5 2963 1483 | 988 744 494
6 2965 | 1483 | 948 IES 494 37
7 2865 {483 | 988 T4 494 371 247
8 2965 | 1483 | 988 741 494 371 247 124
G 2965 1976 | 988 494 247
1o 2963 1976 388 494 247
11 2965 | 1976 Q88 494 247
12 2903 | 988 494 247
13 2963 988
14 2965 454
13 2965 494
i6 2965 | 988 404

3. MODELS

The three types of models compared were us foliows:

{(a) A linear time invariant first order dynamical model which
had parameters that were density dependent was developed
from alt the A replicates of plots 1-8 and the remainder of the
replicates used for cross validation. The model performed
well [Chikumbo and Mareels, 1993b]. The correlation
function of the residuals and the cross-correlation of the

residuals and input variable 1 the model (commonly known
as a correlogram) indicated a model that was representative
.

of the observed basal area trend within 99% confidence. The
madel was as follows:

BA( = afx)BA(-1) + bfx) {1}

where

AT
B4 = stand basal area {m+~/ha}



x = stand density {stems/ha}
¢ = time{vears)

3
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{b) The classical mechanistic growth model  structure,
commonly known as the Chapman-Richard’s generalised von
Bertalenffy’s model, was fitted using all the replicates from
plots 1-8. The basal area function was developed to account
for the changes in the planting densities and was fitted with a
coefficient of determination of 0.9367 and a mean squared
error of 3.82m° {Harrison et al, 19%41 The mean squared
error of an estimate, 3 is £( -1, or the expected value of
its sguared deviation from the parameter ). For the unbiased
estimator the mean squared grror s equal to the variance of
the estimator. However, a mean squared errof close to zero is
highly desirable because it is more fikely 10 produce accorate
estimates for v [Devore, 19911, The model was as follows:

LA = }
Ba = 57.0609[1 - e~ (FOBHETT 1 )

(¢} The multiple regression model based on the empirical
evidence of the COT trhal (plots 1-8), fitted well with a
coefficient of determination of 0.987 and a mean squared
error of 12%% {Marrison et. al, 1994]. lts difference form {for
simulation purposes) was as follows:

I i M
i (BAg) — In(Baz) — 340846 - = |

13 ry)
500717 xg — I x )+ 0.518(in HD; — In HDy ) (3
4 . . ™ 4 # 'l :
Lazsed e M) 4.3352[ Wi -'"—H*?i}
S 2 i

where
4 = natural logarithm

. _ SO RN N R i
Vo =g - (g - xui-e £.0001 5981 ]

1., = asymptotic density (fixed at 90 wreesha)
© o ooy, 09490
—e :

i !
HD» = HD) PR |
— e ) i

4, RESULTS

Mean squared error was used 1o compare the three models
against fresh data from plots 9-16. The mean squared error is
a religble statistic for comparing any two data sefs since i
akes into account thelr individual distributions. Any
prolonged period of basal area measurements, between any
two successive thinnings from a replicate in plots 9-16, were
used for cross validating the three models. The results are
shown in Table 2, with model (1} showing the best results
because of the low mean squared errors. Model (2) had the
icrwest mean squared error in three cases and a mean squared
error that exceeded the variance of the observed data in two
cases. Model (31 was not refiable and in six cases oul of nine
qad a mean squared error thal excesded the variance of the
ohserved data.

‘Table 2. Calculated mean squased ervors from cross validation data of the three modets. The lowest mean squared value Tor each
test is shown in bold print and any that is greater than the variance of the ohserved data is shown in italics.

PLOT AGE RANGE INITIAL YARIAMCE MEAN SQUARED ERRORS

REPLICATES DENSITY
{stemsrha)
model (1} model (2) modet (3)

90 24-36 247 29,42 .55 j63.99 4528
118 16-36 247 43,01 148 47.32 4855
120 24-34 222 13.35 3.87 £.87 8.77
13C 11-29 088 122.87 875 61.72 136.27
4B 13-29 482 75.85 (.68 52.76 9252
158 11-36 464 139.19 0.46 32.11 201.79
b0 24-36 482 2947 13.07 5,52 3701
168 3-10 088 139.3 1.32 4.96 36.54
168 H-36 494 106.12 242 1.98 55.78

5, DISCUSSION

Model (1) had good results because the modelling structure is
based on regressing apainst the previous values of the
response variable and can therefore map a first order non-
tinear trend. The modelling approach is based on system
theary and thus concentrates on modelling trends without a

full comprehension of the processes influencing  the
behaviour of the system.

Model (2} is  developed from the general form:

v=yoll-e)° @)
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which is a continuous-time  model. Ratkowsky [1983]
demonstrated  that the least squares estimates of the
parameters £ and ¢ in eguation (4) undergo considerable
variation making it hard to estimate them. This instability led
Ratkowsky [1983] to recommend 'reparameterisation’ where
one of the offending (sensitive) parameters is expressed as a
function, only of the parameters of the other models, without
the expression conizining the explanatory variables. or the
error term. Maximnum likelihood estimation, that does not
assume any underlying distribution of residuals, can be used
for specifying thc loss function or the objective function 1o
maximise [Press et al, 1992], Non-linear least squares
routines  [Press et al, 19921 such as the Levenberg-
Marguardt method {also called Marquardt method) can be
employed for the gradient search, because of s increased
robustiiess and iterative efficiency. However, data acquisition
in forestry is in discreie-time and it is better to stick o
discretetime  model  development. Model (4) can be
discretised to @ state space representation which would help
to f1x the unstable parameters and estimate them more easily.
The discretised model can be represented as follows:

e+ 1) =zt + B ()
¥o= Gy
where

4 and B matrices depend on ¢ in a non-linear fashion.

I = state.

In principle m can leke any wvalues bul can be eusily
approximated as a rational number

Model (3} is an empirical function that is reflecting
physiological processes. Its  under-performance can  bhe
attributed to the fact that the explanatory variables have to be
estimated from other models and this may be more difficul
than estimating  basal area itself Thus a statistically
significant equation (3) was estimated but the Function did
not prove 1o have good predictive properties, The multiple
regression approach compounds the estimation error of the
response  variable [Pindyck and  Rubinfeid, 19817 in
patticular, mode! (3) required the prediction of mortality
which is a daunting task, because of its sporadic nawre. 7.
potnda i particular s a non-differentiating species and
mortality is therefore difficuit to mode! [Oliver and Larson,
{9907,

A simple model such as (1), which is fairly rebust and
responds to thinning, would be easy i terms of mathematical
tractability, to control in an optimisation formulation
{Chikumbo and Mareels. 1993a] and so attractive for use in a
decision support system.

6, CONCLUSION

Efficiency of dynamical models in predicting basal area has
been demonstrated over other forestry conventional models,
Dynamical models for other growth variables are being
developed but comparison with the conventional models may
be & problem due to the unavailability of fresh data sets for

cross validation. Budiiple regression models need 1o be
applied appropristely, that is. in representing  and
onderstanding the mechanics and processes at work in any
system. For management purposes where prediction and
optimisaiion play a major role. simple models are desirable
provided this is not at the cost of accuracy.
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